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ABSTRACT

ODistribution Limitation Statement No. 2)

A hydrostatically stable atmospheric model is neccqsary to perform theoretical
calculations of hydrodynamic morion in the atmosphere, on a digital computer.
This report presents thrie such models developed at the Air Force Weapons
Laboratory for use in its hydrodynamic computer codes. One is for the annu-'l
mean temperate atmosphere (450 N latitude); one for the annual man tropical
atmosphere (150 N latitude); and one for the summer subarctic atmosphere (600
N latitude). The models are presented herein in tabular form and as FORTRAN
subroutines which could be placed directly into any hydrodynamiL computer code.
For a given altitude (cm), the subroutines return a pressure (dynes/cm2 ),
density (gms/cm3), specific internal energy (ergs/gm), temperature (*K), and
(y - 1). The pressures and densities agroc with tabulated values to at least
1 part in 108 and temperatures to at least I part in 100. The atmospheres
experience an acceleration of no more than 3 parts in 103 in a first order
finite difference scheme with a zone size of 1 kilometer, the worst case.

LI
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I

SECTION I

INTRODUCTION

The Air Force Weapons Laboratory is engaged in research on the phenomenology

of atmospheric nuclear weapons detonations. This research consists of numerical

experiments--theoretical calculations of various yield-altitude detonations--

performed on large memory, high-speed computers. These calculations Pre made

by a series of large, complex, computer codes that enable prediction, from

essentially first principles, of the phenomenology from microseconds to minutes

after a detonation.

Three main codes are used: SPUTTER, a one-dimensional radiation transport

Lagrangian hydrodynamic code; SAP, a one-uLmensional Lagrangian hydrodynamic

code; and SHELL, a two-dimensional Eulerian hydrodynamic code that also has

the capability of doing radiation diffusion. The first, SPUTTER, takes the

radiative output directly from weapons design calculations, deposits the energy

in air, and calculates the ra'iative and hydrodynamic growth of the fireball to

a time of about 1 second. It uses a multifrequency transport scheme involvirg

typically 20 frequency groups. The output of this code is used as input to

SAP, which calcuiates the hydrodynamic expansion of the shock wave at various

angles to the horizontal. The output of SPUTTER is also used .-, input to

SHELL, which calculates fireball growth and rise to late tf'.s.

These codes, or any hydrodynamic code in general, wh'ch perform hydrodvnamic

calculations in a real atmosphere, need an atmospheric model that ,s stahbe in

a Hr gravity fiel,!; otheruise, the nurer :al integration of the hvdrodvnan.ic

equations will result in fictional vertical velocity conooents

This report describes three stable atmospheric models dev.'loprd at

kir Force Weapons l1a1oratorv. The first r-del is base.' on data in rct -cn.,: I

for an annual mean, tg.'tat? ntmo.sphere (45' N latitt.de) f.'r fi y ro
sea level co 700 kilometers. The se,:on, is based on data in refe-cenco ' for 3r

annual me•an, tropical at.csnhere (Is' N iatitude) for al:it-J:os fro-- <e.! level
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to 90 kilometers and reference 1 for altitudes frcii 90 to 700 kilometers.

The third is based on data in reference 3 for a sumeer subarctic atmosFhaere

k'60* N latitude) for altituces from sea level to 90 kilomete-, and reference 1

for altitudes from 90 to 700 kilometers

The Appendix contains a FORTRAN subroutine for the modeis.

f

i
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SECTION TI

DERIVATION OF ThE MODELS

1. Conditions and Acumptions

The molecular scale temperature is the defining property of the US Stan lard

Atmosphere, 1962 (Ref. 1). It is ezfinLd Ly the relationshi-

M

T(z) = T(z) 3)
m M(z)

where T (z) molecuia:" scale temperature at altitude z
m

T(z) absolute temperature at altitude z

M(z) molecular weight of air -t altitude z

M molecular weight of air at sea level
0

The variation of the molecular scale tenrerature is defired as a series of

connected s-goents linear in geopotentia2 altiude to 90 k~iometers and in geo-

metric altitude above 90 kilometers (Ref. i). Thzrefore, we divict trie temp'rate,

tropical, and subarctic mdels into 2;, 22, and 23 altitude vrours respeti'i,., "v

from sea level to 700 kiloleters and assume a lineir ,molecular scale temperature

variation with altitu-e within e•ach altitude group. This v.ir, ition bl:s' t'

f c, rm,

T W ýj( j +(L)z.)

where z the base altitude of the i-th al3it-dt ý-rzu,

' t'ne -vltecular so. 'e te=Perature g'adit-nt over t"We i-,-::: ( ,!

group

Tt(z t+1 ) -Tz)

S - r
T T

3
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We also assume the atmosphere behaves like an ideal gas in which case

p(r) 11(Z)VU) (3)"RT(z)

where p(z) - the densit: at altitude z

p(z) the pressure at altitude z

R the urtve's&L gas constant

Finally. we requi , the atmospheric models to satisfy the condition of

stability given by the in.yrostatic 1uatl.on

•diz2J = -p(z)g(z) (4)

w Sre g(z) the acceleration due to gravity at altitude z

9 a 2goa -

"(a+z)2

g9 the acceleration due to gravity at sea level

a Lhe radius of the earth I
By combining equations 1 through 4, the hydrostatic equation becomes

:O g 0M -dz (6)
p()~(a+z) 2[Tm~ + L)zz]

IiLegration of equation 6 from zi to z results in the final form, which is "

lo calculate pressures in each altitude group.

g N .mlji) (L)a7-) -
P(, T~z (L)a i1 2R (az 7a+zl

tM z m7z7 + (j E-)
+ L t n -a+ z-) T7

4

- 4-~llIIi~ .
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2. CaIculations

To calcuirte the molecular scale temperatures, T and the molecular

sc&le temperature gradients, L, which define each atmospheric model, we take

the pressures listed in references 3., 2, and 3 corresponding to the base

altitude of each altitude group and the molecular scale temperatures as defined

by equation 2 tc be constants. With p (Z ~). p(z±), T, z,), a, go, R, andM0
known, equation 7 becomes

II

) - (L,)ia~.) a+z (3+zi

i~i

+ Li n a+ 1  (8)
Sa+z t z\

which is solved by an appropriate iterative technique to find that molecular

scale temperature gradient, L,, which will satisfy equation 8 and thus, satisfy

the condition of hydrostatic stability for the i-th group. Then the molecular

scale temperature corresponding to the base altitude of the next altitude

group becomes

T(zi+l) - m(Zi) + (Li) (i+l-Zi) (9)

where I is the gradient just calculated. Then the calculation proceeds to the
i

next altitude group where the exact procedure is repeated. This proceduz- is

:epeated until the molecular scale temperature and gradient have been calculated

for all altitude groups.

The calculation begini at sea level for which we take the molecular scale

temperature as listed in references 1, 2, and 3. (This temperature can be

thought of as an "initi::l condition.' All other temperatures are defined by

the gradients obtained from the solution of equation 8 and equation 9.) Solu-

t-Aott of equation 8 provides LI which is used in equation 9 to obtain T2. Uling

T2V equation 8 gives L2 , which in turn by equation 9 gives T3 , and so forth.

5
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We repeat tLe above iteration fox each model using the apnropriate data for

p(zN), T (o), and go as given by the references.

3. Transition Replon at 90 km for the Tropical Atmospheric Model

We used the procedure outlined above to calculate the defininb properties

of all three atmospheric models. However, in the case of the tropical model,

the arithmetic error between calculated and tabulated temperatures Increased

in magnitude and alternated in sign with increasing altitudes above 90 km.

This result was caused by the poor match of data at 90 km provided by refer-

ences 1 and 2. Table I shows the difference in data provieed by the two

references at 90 km.

Table I

DIFFERENCE IN ATMOSPHERIC DATA FOR THE ALTITUDE
90 km GIVEN BY REFERENCES 1 AND 2

p(dynes/cm2 ) P(gm/cm3 ) T m(OK)

Ref 1 1.6438 3.1700 x ]0-9 180.65

Ref 2 1.8620 3.5224 x 10-9 184.15

Therefore, we created a transition region between 90 and 110 km to effect

a smooth transition from the data in reference 2 (0 to 90 km) to the data in

reference 1 (90 to 700 km). We did this by replacing the two altitude groups

from 90 to 100 km and from 100 to 110 km by two groups from 90 km to an altitude,

z, to be determined, and from z to 110 km.

We determined the altitude, z, in the following manner. First, the basic

procedure outlined in section 11-2 was used to calculate the molecular scale

temperatures and gradients for the altitude groups from 0 to 90 km, using the

data in reference 2. Next, we assumed that the isothermnl reginn from 8-1.13

to 90 km actually extends from 80.13 km to the altitude, z; that is, T (80.13) -
m

T m(90) - Tm (z) or L(80.13-z) - 0. Then we calculated the alti' ', z, by itera-

tion according to the analysis below.

Since

Zn~(o + Zn (10)0)
LP(9 0 ) J : ' LP(90)i (L-O) P(Z) (

we have an equation that can be solved by an iterative method to give the

6
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altitude z. The first term on the right of equation 10 becomes

.2g 0 - M0a2 z-90
p(9 0 ) T M(90)R (a+z)(&+90) (11)

The second term becomes

P(110) - 0•(9o Tm(90) - (L)(a+90) (Z-90)

p(z) [g(90) - (a+z)(a+90)

a+90 Tm(90) + (0 -90)(12)
+ Ln az T (90) (12

m J
The valucs p( 90 ) and go are known from reference 2; the values p(llO), a, R,

and TM (110) from reference 1; and T (90) from the calculation. Since L is a

function of z

T (110) - T (90)

110 - z

equation 10 can be solved by iteration to find z.

After finding the altitude z, and p(z) by equation 11, we resumed the

calculation of molecular scale temperatures and gradients for the altitude

groups from 90 to 700 kin, using the method outlined in section I1-2.

Similar differences between references 3 and 1 exist at 90 km for the

subarctic atmosphere. However, it was possible to generate a hydrostatically

stable model without resorting to an artificial transition reglon. Research

on the subarctic model will continue to determine whether such a region will

indeed improve it. In any case, the present subarctic model is adequate for

cdr purposes.

7
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I

SECTION III

APPL I CATIONS

When fitting an atmosphere into a mesh of cells for the purpose of solving

the hydrodynamic equations numerically on a computer, it is necessary to define

a density and specific internal energy as well as a pressure to the atmosphere

contained in each ce1l. Therefore, for a given a&titude z

p(z) - p(zi)e-f (14)

where

g Moa 2  T J- a+z z-Z
f VT 00 ILA)jMk zi) - (Li) (a+zi)]2R (z)a+z *)

a'" T + (L,} - •
+ L tn j+ (15)

and

By the idtel. gs law, the density at altitude z is

T (o)

p(o) T - (o) (16) V

where p(o), -(o), and T (o) aie the sea level values for pressure. Qensity, and

molecular scale temperat'sre, respertively.

To obtain the specific internal energy. 1(z), we require the equation of

state for air which vill be used in the calculation (e-g., t'..- Doan-Hicicl

Equatioa of State for Air. reference 4) to return the sars n-essure as the

8
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atmospheric model. This involves a solution by iteration which proceeds a3

follows. Guess a value for y. Then, by the ideal gas law,

IWi

(y-l)p(z) (17)

where p(z) and p(z) are the values of pressure and density at altitude, z, as

defined by the atmospheric model. Then these values for I(z) and p(z) are

entered into the equation of state for air which returns a value for (Yeffective

- 1). Then, by the ideal gas law, the pressure is

p(z) - (yflve p(z)I(z) (18)
~effective,

The iteration continues until that combination of y and 1(z) is f-und, which

will make the equation of state deliver the same presaure as the atmospheric

model. See appendix.

I

9
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SECTION IV

RESULTS

The annual mean temperate atmospheric model, the annual mean tropical

atmospheric model, and the summer subarctic atmospheric model are given in

tables II, III, and I', respectively. Tables V, VI, and VII show the

difference between the molecular scale temperatures at the base altitude of

each altitude group as listed in references 1, 2, and 3 and those calculated

for the atmospheric models.

The value for the altitzAe, z, used in the transition region of the

tropical atmosphere is 97.84061 kin; that is, the two altitude groups making up

the transition region extend from 91. to 97.84061 km and from 97.84061 to 110 kin.

The appendix contains the models in subroutine form.

I10
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Table [1

DUYINING PROPERTIES O THil ANNAL MEAN TEiPERATE ATMOSPHERE
(450 N latitude)

Molecular ecale Molecular scale
Altitude Pressure temperature gradient temperature

z(cm) (dynee/cm2 ) L (°K/cm) To (OK)

0.0000 1.01325 x 106 -6.49291767 x 10"5  288.150000

1.1019 x 106 2.26320 x 105 9.28049177 x 10-8 216.604540

2.0063 x 106 5.47487 z 10" 9.86254816 x 10-6 216.688473

3.2162 X 106 8.68014 x 103 2.77080370 x 10-5 228.621170

4.7350 x 106 1.10905 x 103 -1.72246873 x 10-7 270.704137

5.2429 x 106 5.90005 x 102 -1.95999298 x 10-5 270.616652

6.1591 x 106 1.82099 x 102 -3.91697376 x 10-5 252.659197

7.9994 X 106 1.03770 x 101 1.60823156 x 10-7 180.575129

9.0000 x 106 1.64380 x 100 2.9816673t x 10-5 180.736048

1.0000 X 107 3.007 z x 10"1 5.02020153 x 10-5 210.552722

1.1000 X 107 7.35440 x 10-2 9.97762308 x 10-' 260.754737

.. 2000 X 107 2.52170 x 10-2 2.00108806 x 10"- 360.530968

1.6000 X 107 -391.. -403041~ 104611.5000 i 107 5.06170 x 10- 1.49589024 x 10 960.857386

1.600x 17 .69.0z 1-31.00407491 x 10'' 1110.446410

1.7000 x 107 2.79260 x 10-3 6.97598503 x 10-5 1210.853900

1.9000 x 107 1.68520 x 10- 5.01601097 x 10-5 1350.373600

2.3000 x 107 6.96040 x 10-4 3.98897144 1 10-5 155i.014040

3.0000 x 107 1.88380 x 10"4 3.31099390 x 10-5 1810.242040

4.0000 X 107 4.03040 x 10-5 2.58868496 a 10"5 2161.341430

5.0000 x 107 1.09570 x 10-5 1.71252931 x 10-5 2420.209930

6.0000 x 107 3.45020 x 10-6 1.09162418 x 10-5 2591.462860

7.0000 x 107 1.19180 x I0" "." 2700.625280

a '.."35670 x 106 to

g 9.80665 x 102 cnifec
2

a •.31440 x 10' erl/mole/deg K.

N * 2.89644 x 101 guimole

11
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Table III

DEFrIme P 3oTII 8 0? THE AONUAL MWA, TROPICAL ATMISPRRZ
(15 N latitude)

Molecular scale Molecular scale
Altitude Pressure temperature gradient taperature

(dy)( s/cu2 ) L ('K/c,) T ('K)

0.000000 1.013250 x 106 -3.69962272 a 10-5 ,99.650000

2.254000 x 105 7.813300 105 -1.29419605 x 10-4 291.311050

2.505000 x 105 7.586100 x 101 -6.75109163 x 10-5 288.062618

1.657000 x 106 1.013700 x 105 4.11001824 x 10.5 193.108515

2.211300 x 106 4.043000 X 104 2.14811736 a 10-5 215.890346

4.743200 x 106 1.188600 x 10, 4.20150001 x 10-7 270.278529

5.149800 x 106 7.175600 x 102 -1.93134924 x 10-5 270.449362

5.965200 x 106 2.535100 x 102 -3.43722820 x o0-5 254.701140

8.013000 X 106 1.100100 x 101 1.98418410 x 10-7 184.313581

9.000000 a .06 1.862000 x 100 -9.16634469 • 10- 184.509420

9.784061 x 106 4.549471 x 10-1 6.35832871 a 10-1 183.790723

1.100000 x 107 7.354400 x 10-2 9.74012527 x 10-5 261.104121

1.200000 x 107  2.521700 X 10-2 2.00803436 x 10"' 358.505374

1.500000 X 107 5.061700 x 10-3 1.44417115 • 10-4 960.915680

1.600000 X 107 3.696300 a 10"3 1.05385251 x 10-' 1105.332790

1.700000 z 107 2.792600 x 10-' 6.68110562 x 10.5 1210.718050

1.900000 x 10' 1.685200 2 10-1 5.15616802 x 10-' 13",.340160

2.300000 X 107 6.96•40 x 10' 3.80307486 x t10- 1550.5863680

3. (W)O0 a 107 1.M38"31% x 10" 3.37947184 x 10" 1822.4602120

4.000000 • 107 4.030400 z 10-1 2.4982W8.1% x 10-' 2160.34930

5.000000 x 10' 1.095700 i 10-$ 1.79W00870 7 10"5 2410.1774-•0I

6.000000 X 107 3.450200 x 10-6 9.9%365149 x 10-6 2590.078270

7.000000 z 10' 1.191600 x 10-6.'' 266.514780

a -6.35470 x 1,p ca

* 9.78381 • "o2 m/..t

A 8.31440 "01 *rg/mv1/4e8 K.

• - 2.9*44 a 101 /mi1

12
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Table IV

DKFhINIW PWFUTIU 01 7W SUMER SUSACTIC AT1ISPFl
(60" X latitude)

Molecular Scale Mllecular scale
Altitude Presurae tpmerature gradient cserature

X(ca) (dyeslcR2) L (K/cm) 7, •'K)

0.0000 1.010C z 106 -5.15226593 x 10-5 287.15000

4.9980 x 105 5.4154 x l0 -7.45507917 x 10-5 261.398975

1.0003 z 106 2.6758 x 105 1.75752072 x 10-6 224.066304

2.3054 X 106 3.7248 x 10e 1.21402825 x 10-5 226.380054

3.2121 x 106 9.8883 x 10 3.20422887 • 10-5 237.387649

4.3237 x 106 2.2624 z 10 5.544864305 x 10- 273.005857

4.8303 x 106 1.2140 x 103 5.03741727 x 10-6 275.814873

5.3376 x 10' 6.5545 x 102 -2.35321674 A 10-5 278.370354

5.9476 x 106 3.0773 x 102 -4.5127351A x 10-5 264.015732

7.9890 x 106 1.2772 • 101 -1.46888732 x 10' 171.892757

9.0000 x 106 1.7851 z 100 3.31280965 x 10-5 170.387694

1.0000 • 107  3.0075 x 10-I 6.61955253 x 10-5 103.515791

1.1000 • 107 7.3544 x 10-2 8.07805343 x 10-' 269.711316

1.2000 x 10' 2.5217 x 10-2 2.10740515 x 10-" 350.491850

1.5000 x 10' 5.0617 x 10- 1.06709040 x 10- 982.113396

x 0o' 3.0943 x 10-' 1.47081912 x 10" 1089.422440

1.7000 x 107 7.7926 x 10-' 4.4967967 X 10- 1236.504250

1.9000 a 10' 1.6652 x 10-' 6.37859718 x 1:0 1326.440340

2. 3000• 107 6.96N • 10x 3.13145277 x 10-" i581.554230

3.0000 x 10' 1.883a 10"I 3 9"5AIJ7 x 10-' 1800.1859)0

4.OO x 1G0 4.03O0 a 10-S 1.335612 : 10-1 2 200.361V 30

W'.0oo0 x I0 1,0957 R t0o- '".-2271247 - .0 -234,.21•647'O

6.0000 x .0' 3.4502 a 10-6 2.4720741 t,•xW 2636.447410

O.000 x 10' 1.191S z to-* .... 065

4* 6.3S10 a cm

at 0 8.31440 2 lei *rg/mla/#Apg I

n - 2.896 a 10 W/ool*

13I
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Table V

PIiMuc tLVM CA& 'l= AM TAWUTW .•C!EAtI
SC*1.3 TROWIWU LA V TUV = ,lTN0PMlIC WN0U.

Taba~ste I Calculated
Atltiude tmtsatumr teawratures z

(cm) M f OX) Differeace

0.0000 288.15 288 15 0.000
1.101t,) z 106 216.65 216.60 -0.02i

2.0063 • 101 216.65 216.69 0.018

;.2162 10' 228.65 228.62 -0.013

4.7350 i 106 270.65 270.70 0.020

5.2429 x 106 270.65 270.62 -0.012

6.1591 x 106 252.65 252.66 0.004

7.9994 x 10t 180.65 180.58 --0.041

9.V" 1O100 190.65 M0.74 0.04u

1.0000 • 10' 210.65 210.55 --. 046

!.iowo • i07 260.65 260.75 0.040

1.2000 10? ).65 360.53 -0.033

1.5 w .10" 960.65 *0.86 0.022

1.6000 i 10' 1110.65 1110.45 -0.018

1.7000 l 1o0 1210.65 1210.5 :.017

1.9000 M 10' 1150.65 1350. 3? -40.020

2.3000 w 10" 15O.6 51551.01 0.023

.3- ow0 io.7 1v.45 19)0.24 -0.022

i.1w 0 2:i0.65 2161.3A 0.012

5.00w a .;.07 1420.65 " 240.'-

6.9 k3 ~94 2"t1.4 0.011

7.00m s 10' 2?,0.65 2700.36 -0.001

i - r 14

A



AFWL-TR.-67-75

* Table VI

DIFVUERCES BETWEEN CALCULTED LID TABULATE MOLECULAR
SCALE TWENUATUILZ IN THE TROPICAL AflI)SPIMKIC MDDkL

Tabulated Calculated
Altitude toetati. re te~.attires I

(CM) (*K) t* ~Difference

0.000000 2"9.65 2"9.65 0.000

2.254000 x 152"6.15 291.31 1. 104

2.50500 x i0s 286.95 288.06 0.3988

1.657000 x 10" 193.15 193.11 -0.021

k.zl1,uu x i O~ 2i5.Z5 z1,.aO '.3"

4.743200 xz0 270.15 270.28 0.048

5.198000 x 106 270.15 270.45 0.111j '5.965200 a x1 25' .15 254.70 0.217

8.013W0 1 106 184.15 184.31 0.069

*9.000000 z rC, 184.15 184.51 0.915

9.78406 a 10, 184.15 183.79 -0.191

1.10000o z 107 260.65 261.10 0.174

1.200000 1 10' 360.65 355.51 -.0.595

1.500000 x 10' 960.65 960. 71 0.028

1.60000C x 171110.65 1105.33 -0.478

1.700000 X 107 1210.65 i1lo.7? 0.006

1.9000OD x 10' 1 M. (15 1344.3.4 -0.467

2.300000 x 10'? 1550 65 1550.59 -.0.004

I .00000' i 10 1839SY.65 1822.40 -0.451

4-.000000 z 101, 2160.65 2160.35 -0.0 1.4

5.000000 x10' 2410.65 11413.18 -0.432

j 6,00000( I-! 2590.65 -30C5-0.1322

7.wow0 so 0 7.5 2"I91 51 *t

ý15
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Table VII

DIFUENCES BETWEEN CALCULATED AOD TABULATED ML•,CULAE
SCALE TtMPERTUEES IN THE SUPARCTIC AThOSlAEdEX MIODEL

Tabulated Calculate l
Altituee teuperaturea temperatures Z

(cm) (*K) (*Kv Difference

0.3000 287.15 287.15 0.000

4.9980 x 105 260.15 261.40 0.480

1.0003 x 106 225.15 224.09 -0.472

2.3054 x 1O 225.15 226.38 0.546

3.2121 x 106 238.65 237.3ý -0.529

4.3237 x 10f 271.65 273.00 0.499

4.8303 x 106 277.15 275.81 -0.482

5,3376 x 106 277.15 278.37 0.440

3.9476 x 10i 265.15 264.02 -O.,28

7.9890 x 106 171.15 171.90 0.434

9.0000 x 10 171.15 170.39 -0.445

1.000ij x 10 7  
210.65 203.52 -3.387

1.1000 x 10 7  
260.85 269.71 3.476

1.2000 x 10 7  360., 350.49 -2.817

1.5000 x 10 7  
960.65 962.7l 2.297

1.6000 x i07 1110.65 1089.42 -1.911

1.7000 x 10 1210.65 1236.50 2.136

1.9000 x 1'7 1350.65 1326.44 -1.792

2.3000 x 107 1550,65 15,11.58 1.9-

3.0000 x 10 7  1830.65 1800.79 -1.631

4.0000 x :07 2V60.65 2200.36 1.337

5.0000 x 107 2420.65 2384.22 -1.505

6.0000 x 107 2590.65 2636.49 1.769

7.0000 x 107 2700.65 2661.21 -1.460
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I,IP

aF

SECTION V

CONCLUSIO14S

The atmospheric models are darived such that the hydrostatic equation is

satisfied.

- -p(z)g(z)
dz

In general, hydrodynamic computer codes calculate dp/dz, the pressure gradient,

by finite difference methods which replace dp/dz by Ap/Az. This approXima"4'on

results in unwanted accelerations which can be written as

zi

a!

For example, given a code in which

p(z+Az) - (E-Az)
ktAZJ 2Az

zt

and assuming ascale hcight, H, constant ovzr the interval, Az, so that the

pressure, p(z), can be wr..'tten
Z-.Z

0[

pz (zo)e I

one can expand (Ap/Az) in powers of Az/H so that to secoaid order, the net

j accelciations are

2
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For all practical purposes, thisi acceleratiou is negligible until the zone size,

Ax, becomes greater than a tenth of a kilometer. For ex=i-?le, at an altitude of

250 kin, the scale height, H, is about 5 kilometers and g about 900 cm/sec . At

250 kmn, the scale height bas its smallest value in the atmosphere so this

exaple-dil gve masue o th wostacceleration. If Az is 0.1 kmn, the

abov reatinshp gvesan cceeraionof 0.05 cm/sec . If 42 is 1 kmn, the

The pressures and densities given by the atmospheric models agree with

tablaed ales n efeenes ad 2toone patin 18adtemporatures'to

oni. part in 100.

18
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II
ri.

APENDIX

SUBROUTINE ATMOS

The FORTRAN subroutine appearing in this appendix is the annual mean

temperate atmospheric model. By inputting an altitude, TTY, the subroutine

will return

WSP the pressure at that altitude

WSR the density at that altitude

WST the temperature at that altitude

WSI the specific internal energy at that altitude

WSU the radial velocity - 0

WSV the axial velocity = 0

GIONE Y -l.

For the annual mean tropical P.tmospheric model or the summer subarctic

atmospheric model, replace the data in the TABZ, TADL, TABT, and TABP biocks

with the data appearing in tables III or IV as appropriate.

19
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A~Vk~:ireO': ,WOACPW,5P.WST-T *W,;u*W5VqVGM0NF.

ýCtJ TA c2S,22, TCFLt22, TAPIT('221 T4APP(tc)

C PL CUL A Th T'H

~~f~l oF THF ;ýATH IN rMs

~~~z~tTON r)uE ~OGPAVTY TNCM*/SFC*/SFC&

--- ,Ac FOQ TW4F 1:-MNPFPATF ATMO.St0HFPE

r' OP THE TPOPTCAL ATMOSPHEPE

"'l.I1 OPTHF --URprPTjC ATMOSPHERE

c W="CLErULAP WE!(rHT Or AIR

w*; 106A4F+O I

c THE FOLLOWING, 04TA IN TAP7* TABLe TART, AND TAIRP AR FROM. TAB3LE 2

rOP TH=' TEMPErATE ATMOSPHERE@ FOP THE TROPICAL OP SV9AnCTIC ATMO-

c0H-mrc cUntSTTTtiTF TMF rDATA =*POM. TAflLFS .1 ANn 4 PF!CPFCTTVFLY*

c TAS7 It- Tr,-. RASF ALTYTUDE Or rACH ALTITUDF C,0OUP IN CMG

TAq7( 1)=Oo

TAn7l. '2'=7OO63F+06
TAP,,( 4):.3*2162F+06

TAR7( --)=4&7350E+06
TA=7( ý')=*420F+06
TAM~7C 7,=6oI99lE+O6

TA9R1( 0)=P.OE+f96

TAR7( IC')=IO*OE+O6
TAR7(1 ) = 11 .E..06

TAn7C !P,=12%OE+06

*rAq7(11I=0'.OE+06

-ALT H OFUA CL TEMOEPATUPFGADET F F:CH ALTITUDF

TAMLC ')v qon2F4PVliF-O6

TArLf 4i= 2*77n'qO370E-0e



T 2- PL 2 0 C'2Ou3-3

T A Fu 4 L:, ~74E- 0
TM AP p L rt "1 4 -0 4

TAFIL( f I 160 1 4 7) 7`7-

TP1. 3~ 21 rQ -`ýOF+02
TA'-IT( 3p2.166ýP,4-72~E+OF

TArvT( 1 ?.7041 P37,-1+-o2

TAR)T( 1)= 1

TART 10 2.166e.2722E+O2
TAPTC 11 1~ 2.~7~737E'+0

TAPqT( f?ý 34 O3-6EO

TATIT( 7)= i.1 07FI+02

TAnT( R): I POI'0173I60E+02

TART(10)= 2.'50!74O4F2+02

TA9T( 1Rv) .3602420t3E+02

TART (14)= 2. 1 613641 4+03
TAqT( i I &P 220209i3cE+Q3
TART(516) 2.'Qr4762F0F.+O

TAPTCtp)I) 2 *c70q 06266fFý+03

C T APP I- THC' nFcSUP C00P O!-'0nN-rIC TO THV TAS7 TN flYN~c-C09/CMo

TAPP( Po "63P0MF+M5'
T4RP( 7474n

TA90f( 4) =Po6P.014'+02
TARP( mI=.IOqO5E+0 2

TARO( n n.l3COic +O2

~AriD f ')=ioVl77F+~01

TAR~P( * -.64*I-O2(

TAVnD f I t 2$F~-
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TA8P( I8)21.R838E-04

TARP( 1Ouz49O304E-0ýt

TAIMP( O) xl .0Q57E-05
TAqP(Pt )a3.45O?E-O6

QHOa*v*TAAP( I)/(TAFST( I)*P)

C D0 80 JAT*1921 FOP THF TEMPFOATE ATMOSPHEOF
C 00 80 JATzle22 FOR THE TROPICAL ATMOSPHFRE

0. no AO JATzl*23 FCQ THE CUSAPCTIC ATMOSPHFPF

DO Mn JAT*1*21

r JAT*?I FO THP TrMPFOATF A~TM09PHEOF
C JATz2vb FOR THE TPOMICAL ATMOSPHERE

C JATz2i FOP THE SLJeAPCTIC ATMOSPHERE
JAT*21

no TO flP

a~l JATsJAT-1

Q? CONSza*A*G*W/P
DU~(T-A7j')/(4TJ(+A7JT)
DUM3=(Le+TAAZ(JAT))/(A+TTvý
VAR1.TARTfJAT)-TABL(JAT)4I(A+TAOZ(JAT))
VAR2u(?TA9TJAT,+TAFRL(JAT)*CrTy-.TA5Z(JAT)))/TAPT(JAT)
FSaCOP4F;/(VAW1*VAQI )*(VAP1*DUM2,TASL(JAT)*LOGF(DUmleVAR2))

WS02T60( JA") *FX0fF(-r.;)

W9QzcVP*YA 0 T( I)*RHO7 /lwlrT*TA8P( I))

C CALCULATF THC INTERNAL EtNERGY
C

FSOxO,
GAMI aq

OGM=-m*001O
Ono t0mosWCo

E*WCP/(GAMI *WSP)

C OOAN-NIC.KEL SEMI-PHyS;ICAL FIT 0Q THF FOUATION OF ';TATE OF AIP

C TEUPFQATUtOFc FOOM *O25 To 1.5 EL.FCTflON VOLTS
DPFjITS FPOOM lO**p TO ~A*-~NIQMAL DPNJSITY
PPee-~C~tp a (nAmMA-I.)#PHO*Fs WHFPE rAMMA fI- A CVNCTION OF

C Ir~%rITY ANnf FKIF0(v

f^ ONm VATr~lI~L DENSITY

C 0P4O7 J* ?Q3F6 MEGAGCh'S/CUýI1C KILO*AFTFQ* IN THF UNlTc; 3F T"4E

c EF7a )Fc/%0FACPd. IN THF UNITS OF TNIE PQ(nLEM

c G'4%NF a "AmWA vtNVS ECNE

C MAKE ff oOITIVP IF NFGATIVF9 A~*o CONjVrefi T JF0¶c/MEC.AnCAM
102 EAeAr(r)/l'Z

22
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All~
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THF ENIFQGY AT WHICH OXVGFN AND) NITPOr~FN 0ISe,!Q~tA'E ftl 'A
C PUNCTTON OF DENSITY

C T~ir FgomI-DIPAC FUNCTION IS ONLY COMPUTFOi WITHIN 5o*DFLTA F OF
C EAC4 TRANSITION, OTHERWI-,E IT I5 ONF OP ZwQ0

* ~IF (Auq4F(j)p-5*) 106910391C3

!04 FOvEX*F(-E/4o46)

Vý'NwOo

.GO 110 107
105 FOmO.

FONaEvPrc -E/6 .63)

GO TO 107
106 DElveo7l5*(fQH0/PmOZ)***05

EF~wm -- 3S7*POWER

WSI ./(FXPF(-E1 )+1 e)
FOuFXPF(t-F/49*46) #W5
F0NzEyPF(-F/6063)*( I -WS)

c THF !)CNSITv DEPENDFNCE ONLY OCCURS A~f0VE O'cle ANIO IT IS OF
C THE FORM (PHO/PH07)**(CONS;TAýJTLOG(F.).* THE rONSTANTc MAKES A TRANSITION FPOM s048 TC .029 AS THE OXYGEN DISSOCIATES
C ANn THE DENSITY SPqEAD BECOMES CONSTANT PF'vONI- THE TH!QD PEAK

Go TO 110
109 SETAzc*o48*WS+.o32*(1..WS))*ALOG(E),2.30

2 !ý851

IF (A"5F(r2%-5*! 114,1119111

112 FNuO*

WSROO
GO TO 115

113 1.E0F-/7*i

GO TO 11c;
114 0F2z4,0(QHO/0HOZ,...08.5

E2a (~E-'2)/OE2

FNwEXoF( -F/25eS)*WS

PFTAESFTA*(l* -wS)..O45*WA
IF lI111

11e6 rFrO,

G~o TO tip

tip 0HO-FAfz(PHO/HO7)**P~ETA

P*GMCO-4 *FNY.*Hn

23,

...................................................... C

,M~
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ei*9 IF (Wei4SO) 100 1 9 O160oIOEnO

Go TO 1002

GAM1 a(AM14DGM
100? IF(GAMI'1004o1003st003
1003 IF(ASC(rnGM)-1.0E-10)1oo4,qoo,900

1004 Wl1u 0/(GMONF*WSRI

FN()0

WSVS2.

.A,
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